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This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based damping
controllers for damping low frequency oscillations in a power system. Detailed investigations have been carried
out considering four alternative UPFC based damping controllers. The investigations reveal that the damping
controllers based on UPFC control parameters δE and δB provide robust performance to variations in system loading
and equivalent reactance Xe.

Keywords : UPFC; Damping controller; Low frequency oscillations; FACTS

NOTATIONS

Cdc : dc link capacitance

D : damping constant

H : inertia constant (M = 2H)

Ka : AVR gain

Kdc : gain of damping controller

mB : modulation index of series converter

mE : modulation index of shunt converter

Pe : electrical power of the generator

Pm : mechanical power input to the generator

Ta : time constant of AVR

Tdo : d-axis open circuit time-constant of generator

T1,  T2 : time constants of phase compensator

Vb : infinite bus voltage

Vdc : voltage at dc link

Vt : terminal voltage of the generator

XB : reactance of boosting transformer (BT)

XBv : reactance of the transmission line

Xd : direct axis steady-state synchronous reactance
of generator

X′d : direct axis transient synchronous reactance of
generator

XE : reactance of excitation transformer (ET)

Xe : equivalent reactance of the system

Xq : quadrature axis steady-state synchronous reac-
tance of generator

XtE : reactance of transformer

δB
: phase angle of series converter voltage

δE : phase angle of shunt converter voltage

ωn : natural frequency of oscillation (rad/sec)

INTRODUCTION

The  power  transfer  in  an  integrated  power  system  is con-
strained by transient stability, voltage stability and small signal
stability.   These   constraints   limit   a   full   utilization of avail-
able transmission corridors. Flexible ac transmission system
(FACTS) is the technology that provides the needed corrections
of the transmission functionality in order to fully utilize the
existing transmission facilities and hence, minimizing the gap
between the stability limit and thermal limit.

Unified power flow controller (UPFC) is one of the FACTS
devices, which can control power system parameters such as
terminal voltage, line impedance and phase angle. Therefore, it
can be used not only for power flow control, but also for power
system stabilizing control.

Recently researchers have presented dynamic models of UPFC in
order to design suitable controllers for power flow, voltage and
damping controls1 − 6. Wang6 − 8, has presented a modified linear-
ised Heffron-Phillips model of a power system installed with
UPFC. He has addressed the basic issues pertaining  to the design
of UPFC damping controller, ie, selection of robust operating
condition for designing damping controller; and the choice of
parameters of UPFC (such as mB, mE, δB and δE) to be modulated
for achieving desired damping.

Wang has not presented a systematic approach for designing the
damping controllers. Further, no effort seems to have been made
to identify the most suitable UPFC control parameter, in order to
arrive at a robust damping controller.

In view of the above the main objectives of the research work
presented in the paper are,

ll To present a systematic approach for designing UPFC
based damping controllers.

ll To examine the relative effectiveness of modulating
alternative UPFC control parameters (ie, mB, mE, δB and δE),
for damping power system oscillations.
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ll To investigate the performance of the alternative damping
controllers, following wide variations in loading
conditions and system parameters in order to select the
most effective damping controller.

SYSTEM INVESTIGATED

A single-machine-infinite-bus (SMIB) system installed with
UPFC is considered (Figure 1). The static excitation system
model type IEEE-ST1A has been considered. The UPFC consid-
ered here is assumed to be based on pulse width modulation
(PWM) converters. The nominal loading condition and system
parameters are given in Appendix-1.

UNIFIED POWER FLOW CONTROLLER

Unified power flow controller (UPFC) is a combination of static
synchronous compensator (STATCOM) and a static synchronous
series compensator (SSSC) which are coupled via a common dc
link, to allow bi-directional flow of real power between the series
output terminals of the SSSC and the shunt output terminals of
the STATCOM and are controlled to provide concurrent real and
reactive series line compensation without an external electric
energy source. The UPFC, by means of angularly unconstrained
series voltage injection, is able to control, concurrently or selec-
tively, the transmission line voltage, impedance and angle or
alternatively, the real and reactive power flow in the line. The
UPFC may also provide independently controllable shunt reac-
tive compensation.

Viewing the operation of the UPFC from the standpoint of con-
ventional power transmission based on reactive shunt compensa-
tion, series compensation and phase shifting, the UPFC can fulfil
all these functions and thereby meet multiple control objectives
by adding the injected  voltage VBt with appropriate amplitude and

phase angle, to the terminal voltage V0.

MODIFIED HEFFRON-PHILLIPS SMALL
PERTURBATION TRANSFER FUNCTION MODEL OF
A SMIB SYSTEM INCLUDING UPFC

Figure 2 shows the small perturbation transfer function block
diagram of a machine-infinite bus system including UPFC relat-
ing the pertinent variables of electric torque, speed, angle, termi-
nal voltage, field voltage, flux linkages, UPFC control
parameters, and dc link voltage. This model has been ob-
tained6, 7 by modifying the basic Heffron- Phillips model9 includ-
ing UPFC. This linear model has been developed by linearising

the nonlinear differential equations around a nominal operating
point. The twenty-eight constants of the model depend on the
system parameters and the operating condition (Appendix - 2).

In Figure 2, [∆ u] is the column vector while [Kpu], [Kqu], [Kvu]

and [Kcu] are the row vectors as defined below,

[∆ u]  =  [∆ mE  ∆ δE  ∆ mB  ∆ δB]
T

[Kpu]  =  [Kpe  Kpδe  Kpb  Kpδb]

[Kvu]  =  [Kve  Kvδe  Kvb  Kvδb]

[Kqu]  =  [Kqe  Kqδe  Kqb  Kqδb]

[Kcu]  =  [Kce  Kcδe  Kcb  Kcδb]

The significant control parameters of UPFC are,

1. mB — modulating index of series inverter. By controlling
mB, the magnitude of series injected voltage can be
controlled, thereby controlling the reactive power
compensation.

2. δB — Phase angle of series inverter which when controlled
results in the real power exchange.

3. mE — modulating index of shunt inverter. By controlling
mE, the voltage at a bus where UPFC is installed, is
controlled through reactive power compensation.

4. δE — Phase angle of the shunt inverter, which regulates
the dc voltage at dc link.

ANALYSIS

Computation of Constants of the Model

The initial d-q axes voltage and current components and torque
angle  needed  for  computing  K - constants   for  the  nominal

operating condition are computed and are as follows :

Q = 0.1670 pu Ebdo = 0.7331 pu

edo = 0.3999 pu Ebqo = 0.6801 pu

eqo = 0.9166 pu ido = 0.4729 pu

δo = 47.1304° iqo = 0.6665 pu

The K - constants of the model computed for nominal operating
condition and system parameters are

K1 = 0.3561 Kpb = 0.6667 Kpδe = 1.9315

K2 = 0.4567 Kqb = 0.6118 Kqδe = − 0.0404

K3 = 1.6250 Kvb = − 0.1097 Kvδe = 0.1128

K4 = 0.09164 Kpe = 1.4821 Kcb = 0.1763

K5 = − 0.0027 Kqe = 2.4918 Kce = 0.0018

K6 = 0.0834 Kve = − 0.5125 Kcδb = − 0.041

K7 = 0.1371 Kpδb = 0.0924 Kcδe = 0.4987

K8 = 0.0226 Kqδb = − 0.0050 Kpd = 0.0323

K9 = − 0.0007 Kvδb = 0.0061 Kqd = 0.0524

Kvd = − 0.0107

Figure 1 UPFC installed in a SMIB system
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For this operating condition, the eigen-values of the system are
obtained (Table 1) and it is clearly seen that the system is unstable.

Design of Damping Controllers

The damping controllers are designed to produce an electrical
torque in phase with the speed deviation. The four control parame-
ters of the UPFC (ie, mB, mE, δB and δE) can be modulated in order

to produce the damping torque. The speed deviation ∆ω is con-
sidered as the input to the damping controllers. The four alterna-
tive UPFC based damping controllers are examined in the present
work.

Damping controller based on UPFC control parameter mB shall
henceforth by denoted as damping controller (mB). Similarly

damping controllers based on mE, δB and δE shall henceforth be

denoted as damping controller (mE), damping controller (δB), and

damping controller (δE), respectively.

The structure of UPFC based damping controller is shown in
Figure 3. It consists of gain, signal washout and phase compen-
sator blocks. The parameters of the damping controller are ob-
tained using the phase compensation technique9. The detailed
step-by-step procedure for computing the parameters of the
damping controllers using phase compensation technique is given
below :

1. Computation of natural frequency of oscillation ωn from

the mechanical loop.

ωn  =  √ 
K1 ω0

M

Table 1 Eigen-values of the closed loop system

Eigen-values ωn of Oscillatory
Mode

ζ of the
Oscillatory

Modes

System without
any damping
controller

− 19.1186
0.0122 ± 4.0935i

− 1.2026

4.09 rad/s − 0.00297

Figure 3 Structure of UPFC based damping controller

Figure 2 Modified Heffron-Phillips model of SMIB system with UPFC
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2. Computation of ∠GEPA (Phase lag between ∆ u and
∆ Pe) at s  =  j ω n. Let it be γ.

3. Design of phase lead/lag compensator Gc:

The phase lead/lag compensator Gc is designed to provide
the required degree of phase compensation. For 100%
phase compensation,

∠Gc (j ωn)  +  ∠GEPA (j ωn)  =  0

Assuming one lead-lag network, T1 = a T2, the transfer
function of the phase compensator becomes,

Gc (s)  =  
1  +  saT2

1  +  sT2

Since the phase angle compensated by the lead-lag
network is equal to −  γ, the parameters a and T2 are
computed as,

a  =  
1  +  sin γ
1 − sin γ

T2  =  
1

ωn √a

4. Computation of optimum gain Kdc.

The required gain setting Kdc for the desired value of

damping ratio ζ  =  0.5 is obtained as,

Kdc  =  
2 ζ ωnM

Gc (s) GEPA (s)

Where Gc (s) and GEPA (s) are evaluated at s  =  j ωn.

The signal washout is the high pass filter that prevents steady
changes in the speed from modifying the UPFC input parameter.
The value of the washout time constant Tw should be high enough

to allow signals associated with oscillations in rotor speed to pass
unchanged. From the viewpoint of the washout function, the
value of Tw is not critical and may be in the range of 1s to 20s.

Tw equal to 10s is chosen in the present studies.

Figure 4 shows the transfer function of the system relating the
electrical component of the power (∆ Pe) produced by the damp-

ing controller (mB).

The time constants of the phase compensator are chosen so that
the phase lag/lead of the system is fully compensated. For the
nominal operating condition, the natural frequency of oscillation
ωn = 4.0974 rad/sec. The transfer function relating ∆ Pe and

∆mB is denoted as GEPA. For the nominal operating condition,

phase angle of GEPA ie, ∠GEPA  =  9.057° lagging. The magni-
tude of GEPA ie, GEPA  =  0.6798. To compensate the phase
lag, the time constants of the lead compensator are obtained as
T1 = 0.2860 s and T2 = 0.2082 s.

Following the same procedure, the phase angle to be compensated
by the other three damping controllers are computed and are given
in Table 2.

The critical examination of Table 2 reveals that the phase angle
of the system ie, ∠GEPA, is lagging for control parameter mB and

mE. However, it is leading for δB and δE. Hence the phase com-

pensator for the damping controller (mB) and damping controller

(mE) is a lead compensator while for damping controller (δB) and

damping controller (δE) is a lag compensator. The gain settings

(Kdc) of the controllers are computed assuming a damping ratio

ξ = 0.5. Table 3 shows the parameters (gain and time constants)
of the four alternative damping controllers. Table 3 clearly shows
that gain settings of the damping controller (mE) and damping

controller (δE) doesn’t differ much. However, the gain settings of

damping controller (δB) is much higher as compared to the damp-

ing controller (mB).

Table 2 Gain and phase angle of the transfer function GEPA

GEPA |GEPA| ∠GEPA

∆ Pe
 ⁄ ∆mE

1.5891          − 18.3805°       

∆ Pe
 ⁄ ∆δE

1.9251          3.4836°       

∆ Pe
 ⁄ ∆mB

0.6789          − 9.0527°       

∆ Pe
 ⁄ ∆δB

0.0923          4.2571°       

Figure 4 Transfer function of the system relating component of
               electrical power (∆ Pe) produced by damping controller (mB)

Table 3 Parameters of the UPFC based damping controllers

Kdc T1, s T2, s

Damping controller (mE) 14.8813 0.3383  0.1761  

Damping controller (δE) 18.0960 0.2296  0.2516  

Damping controller (mB) 41.1419 0.2860  0.2082  

Damping controller (δB) 382.4410 0.2266  0.2694  
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Dynamic Performance of the System with Damping
Controllers

Figure 5 shows the dynamic responses for ∆ ω obtained consi-
dering a step load perturbation ∆ Pm  =  0.01 pu with the follow-
ing four alternative damping controllers :

1. Damping controller (mB) : Kdc = 41.1419, 
T1 = 0.2860 s, T2 = 0.2082 s

2. Damping controller (δB) : Kdc = 382.4410, 
T1 = 0.2266 s, T2 = 0.2594 s

3. Damping controller (mE) : Kdc = 14.8813, T1 = 0.3383s,
T2 = 0.1761 s

4. Damping controller (δE) : Kdc = 18.0960, T1 = 0.2296 s,
T2 = 0.2516 s

Figure 5 clearly shows that the dynamic responses of the system
obtained with the four alternative damping controllers are virtu-
ally identical. At this stage it can be inferred that any of the UPFC
based damping controllers provide satisfactory dynamic perform-
ance at the nominal operating condition.

Effect of Variation of Loading Condition and System
Parameters on the Dynamic Performance of the System

In any power system, the operating load varies over a wide range.
It is extremely important to investigate the effect of variation of
the loading condition on the dynamic performance of the system.

In order to examine the robustness of the damping controllers to
wide variation in the loading condition, loading of the system is
varied over a wide range (Pe  =  0.1 pu to Pe = 1.2 pu) and the
dynamic responses are obtained for each of the loading condition
considering parameters of the damping controllers computed at
nominal operating condition for the step load perturbation in
mechanical power (ie, ∆ Pm  =  0.01 pu).

Figures 6 and 7 show the dynamic responses of ∆ ω with nominal
optimum damping controller (mB) and damping controller (mE) at
different loading conditions. It is clearly seen that the dynamic
performance at light load condition deteriorates significantly as
compared to that obtained at the nominal loading.

Figures 8 and 9 show the dynamic responses of ∆ ω with nominal
optimum damping controller (δB) and damping controller (δE),
respectively. It is clearly seen that the responses are hardly
affected in terms of settling time following wide variations in
loading condition.

From the above studies, it can be concluded that the damping
controller (δB) and damping controller (δE) exhibit robust dy-
namic performance as compared to that obtained with damping
controller (mB) or damping controller (mE).

In view of the above, the performance of damping controller
(δB) and damping controller (δE) are further studied with variation
in equivalent reactance, Xe of the system. Figures 10 and 11 show
the dynamic performance of the system with damping controller
(δB) and damping controller (δE), respectively, for wide variation
in Xe. Examining Figures 10 and 11, it can be inferred that
damping controller (δB) and damping controller (δE) are quite
robust to variations in Xe also.

Figure 6  Dynamic responses for ∆ω with damping controller (mB) for
               different loading conditions

Figure 7  Dynamic responses for ∆ω with damping controller (mE) for
               different loading conditions

Figure 5  Dynamic responses for ∆ω with four alternative damping
               controllers
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It may thus be concluded that damping controller (δB) and damp-

ing controller (δE) are quite robust to wide variation in loading
condition and system parameters. The reason for the superior
performance of damping controller (δB) and damping controller

(δE) may be attributed to the fact that modulation of δB and δE

results in exchange of real power.

CONCLUSIONS

The significant contributions of the research work presented in
this paper are as follows :
ll A systematic approach for designing UPFC based

controllers for damping power system oscillations has
been presented.

ll The performance of the four alternative damping
controllers, (ie, damping controller (mE), damping

controller (δE), damping controller (mB), and damping

controller (δB) has been examined considering wide
variation in the loading conditions and line reactance Xe.

ll Investigations reveal that the damping controller (δE) and

damping controller (δB) provide robust performance to
wide variation in loading conditions and line reactance Xe.
It may thus be recommended that the damping controllers
based on UPFC control parameters δE and δB may be
preferred over the damping controllers based on control
parameters mB or mE.
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APPENDIX 1

The nominal parameters and the operating condition of the system are given
below.

Generator :M = 2H = 8.0 MJ/MVA D = 0.0  Tdo = 5.044 s

Xd = 1.0 pu         Xq = 0.6 pu           X′d = 0.3 pu

Excitation system :Ka = 100 Ta = 0.01 s

Transformer : XtE = 0.1 pu XE = XB = 0.1 pu

Transmission line :XBv = 0.3 pu Xe = XBv + XB + XtE 

= 0.5 pu

Operating condition :Pe = 0.8 pu Vt = 1.0 pu

Vb = 1.0 pu f = 60 Hz

UPFC parameters :mE = 0.4013 mB = 0.0789

δE = − 85.3478° δB = − 78.2174°

Parameters of dc link :Vdc = 2 pu Cdc = 1 pu

APPENDIX 2

Computation of constants of the model

The constants of the modified Heffron-Phillips model are computed from the
expressions given below

K1 = (Vtd − Itq X′d) (XdE − Xdt) Vb sin δ ⁄ Xd∑ + (Xq Itd + Vtq) ×

        (Xqt − XqE) Vb cos δ ⁄ Xq ∑
K2 = − (XBB + XE) Vtd

 ⁄ Xd ∑ Xd + (XBB + XE) X′d Itq
 ⁄ Xd ∑

K3 = 1 + (X′d − Xd) (XBB + XE) ⁄ Xd ∑
K4 = − (X′d − Xd) (XdE − Xdt) Vb sin δ ⁄ Xd ∑
K5 = (Vtd

 ⁄ Vt) Xq (Xqt − XqE) Vb cos δ ⁄ Xq ∑ − (Vtq
 ⁄ Vt) X′d 

        (Xd E − Xdt) Vb sin δ ⁄ Xd ∑
K6 = (Vtq

 ⁄ Vt) (Xd ∑ + X′d (XBB + XE)) ⁄ Xd ∑
K7 = (3 ⁄ 4 Cdc) 



Vb sin δ (mE cos δE XdE − mB cos δB Xdt) ⁄ 

        .Xd ∑ + Vb cos δ (mB sin δB Xqt − mE sin δE XqE) 




K8 = − (3 ⁄ 4 Cdc) (mB cos δB XE + mE cos δE XBB) ⁄ Xd ∑
K9 = (3 ⁄ 4 Cdc) 




mB sin δB (mB cos δB Xdt − mE cos δE Xd E) ⁄ 2 Xd ∑

       + mE sin δE (mE cos δE XBd − mB cos δB Xdt) ⁄ 2 Xd ∑
       + mB cos δB (mB sin δB Xqt − mE sin δE XqE) ⁄ 
.
       2 xq∑  +  mE cos δE (− mB sin δB XqE + mE sin δE XBq) ⁄ 2 Xq ∑ 





Kpe = (Vtd − Itq X′d) (XBd − Xd E) Vdc sin δE
 ⁄ 2 Xd ∑ + (Xq Itd + Vtq)

          (XBq − Xq E) Vdc cos δE
 ⁄ 2 Xq ∑

Kpδe = (Vtd − Itq X′d) (XBd − Xd E) Vdc mE cos δE
 ⁄ 2 Xd ∑ + (Xq Itd + Vtq)

           (− XBq + Xq E) Vdc mE sin δ E ⁄ 2 Xq ∑
Kpb = (Vtd − Itq X′d) (Xdt − Xd E) Vdc sin δB

 ⁄ 2 Xd ∑ + (Xq Itd + Vtq) 

          (Xqt − Xq E) Vdc cos δB
 ⁄ 2 Xq ∑

Kpδb = (Vtd − Itq X′d) (Xd E + Xdt) Vdc mB cos δB
 ⁄ 2 Xd ∑ + (Xq Itd + Vtq) 

            (− Xqt + Xq E) Vdc mB sin δB
 ⁄ 2 Xq ∑

Kpd = (Vtd − Itq X′d) 

 (Xdt − Xd E) mB sin δB

 ⁄ 2 Xd ∑ + 

.          (XBd − Xd E) mE sin δE
 ⁄ 2 Xd ∑ 


 + (Xq Itd + Vtq) 

          

(Xqt − Xq E) mB cos δB

 ⁄ 2 Xq ∑ + (XBq − Xq E) mE cos δE
 ⁄ 2 Xq ∑ 



Kqe = − (X′d − Xd) (XBd − XdE) Vdc sin δE
 ⁄ 2 Xd ∑

Kqδe = − (X′d − Xd) (XBd − Xd E) mE Vdc cos δE
 ⁄ 2 Xd ∑

Kqb = − (X′d − Xd) (Xdt − Xd E) Vdc sin δB
 ⁄ 2 Xd ∑

Kqδb =  − (X′d − Xd) (Xd E + Xdt) mB Vdc cos δB
 ⁄ 2 Xd ∑

Kqd = − (X′d − Xd) 

 (XBd − XdE) mE sin δE

 ⁄ 2 Xd ∑ 

.          + (Xdt − Xd E) mB sin δB
 ⁄ 2 Xd ∑ 



Kve = (Vtd
 ⁄ Vt) Xq (XBq − Xq E) Vdc cos δE

 ⁄ 2 Xq ∑ − (Vtq
 ⁄ Vt) X′d 

          (XBd − Xd E) Vdc sin δE
 ⁄ 2 Xd ∑

Kvδe = (Vtd
 ⁄ Vt) Xq (XqE − XBq) mE Vdc sin δE

 ⁄ 2 Xq ∑ − (Vtq
 ⁄ Vt) X′d 

           (XBd − Xd E) mE Vdc cos δE
 ⁄ 2 Xq2

Kvb = (Vtd
 ⁄ Vt) Xq (Xqt − XqE) Vdc cos δB

 ⁄ 2 Xq ∑ − (Vtq
 ⁄ Vt) X′d 

           (Xdt − Xd E) Vdc sin δB
 ⁄ 2 Xd ∑

Kvδb = (Vtd
 ⁄ Vt) Xq (Xq E − Xqt) mB Vdc sin δB

 ⁄ 2 Xq ∑ − (Vtq
 ⁄ Vt) X′d 

            (Xd E + Xdt) mB Vdc cos δB
 ⁄ 2 Xd ∑

Kvd = (Vtd
 ⁄ Vt) Xq 


 (XBq − XqE) mE cos δE 

 ⁄ 2 Xq ∑
.         + (Xqt − XqE) mB cos δB

 ⁄ 2  Xq ∑ 

 − (Vtq

 ⁄ Vt) X′d 

         

(XBd − XdE) mE sin δE

 ⁄ 2 Xd ∑ + (Xdt − Xd E) mB sin δB
 ⁄ 2 Xd ∑ 



Kce = (3 ⁄ 4 Cdc) 


Vdc sin δE (mE cos δE XBd − mB cos δB Xd E) 




 ⁄ 

         2 Xd ∑ + Vdc cos δE (mE sin δE XBq − mB sin δB Xq E) ⁄ 2 Xq ∑
Kcδe = (3 mE

 ⁄ 4 Cdc) (cos δE IEq − sin δE IEd) + (3 ⁄ 4 Cdc)

           

 mE Vdc cos δE (mE cos δE XBd − mB cos δB XdE) ⁄ 2 Xd ∑ 

.           + mE Vdc sin δE (mB sin δB XqE − mE sin δE XBq) ⁄ 2 Xq ∑ 


Kcb = (3 ⁄ 4 Cdc) 


Vdc sin δB (− mE cos δE Xd E + mB cos δB Xdt) 




 ⁄ 

          2 Xd ∑ + Vdc cos δB (mB sin δB Xqt − mE sin δE Xq E) ⁄ 2 Xq ∑

Kcδb = (3 mB
 ⁄ 4 Cdc) (cos δB IBq − sin δB IBd) + (3 ⁄ 4 Cdc) 




 mB Vdc cos δB 

           (mE cos δE Xd E + mB cos δB Xdt) ⁄ 2 Xd ∑ + mB Vdc sin δB 

.           (− mB sin δB Xqt + mE sin δE XqE) ⁄ 2 Xq ∑ 


where,

Xqt = Xq + Xt E + XE    Xq E = Xq + Xt E    Xdt = XE + X′d + Xt E

Xd E = X′d + XTE    XBB = XB + XBv    Xq ∑ = Xqt XBB + XE XqE

Xd ∑ = − Xdt XBB − XdE XE
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